Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 24(1): 51, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654159

RESUMO

BACKGROUND: Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS: From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION: The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.


Assuntos
Paleógnatas , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Paleógnatas/genética , Masculino , Feminino , Evolução Molecular , Repetições de Microssatélites/genética , Evolução Biológica , Hibridização Genômica Comparativa
2.
Genome Biol Evol ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227001

RESUMO

Palaeognathae consists of five groups of extant species: flighted tinamous (1) and four flightless groups: kiwi (2), cassowaries and emu (3), rheas (4), and ostriches (5). Molecular studies supported the groupings of extinct moas with tinamous and elephant birds with kiwi as well as ostriches as the group that diverged first among the five groups. However, phylogenetic relationships among the five groups are still controversial. Previous studies showed extensive heterogeneity in estimated gene tree topologies from conserved nonexonic elements, introns, and ultraconserved elements. Using the noncoding loci together with protein-coding loci, this study investigated the factors that affected gene tree estimation error and the relationships among the five groups. Using closely related ostrich rather than distantly related chicken as the outgroup, concatenated and gene tree-based approaches supported rheas as the group that diverged first among groups (1)-(4). Whereas gene tree estimation error increased using loci with low sequence divergence and short length, topological bias in estimated trees occurred using loci with high sequence divergence and/or nucleotide composition bias and heterogeneity, which more occurred in trees estimated from coding loci than noncoding loci. Regarding the relationships of (1)-(4), the site patterns by parsimony criterion appeared less susceptible to the bias than tree construction assuming stationary time-homogeneous model and suggested the clustering of kiwi and cassowaries and emu the most likely with ∼40% support rather than the clustering of kiwi and rheas and that of kiwi and tinamous with 30% support each.


Assuntos
Paleógnatas , Struthioniformes , Animais , Filogenia , Paleógnatas/genética , Struthioniformes/genética , Galinhas/genética , Íntrons
3.
Syst Parasitol ; 100(3): 269-281, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826706

RESUMO

Brown kiwi (Apteryx mantelli Bartlett), a ratite endemic to New Zealand, is currently listed as "Vulnerable" under the IUCN classification system due to predation by introduced mammals. Operation Nest Egg (ONE) raises chicks and juveniles in predator-proof enclosures until they are large enough to defend themselves. These facilities experience an environmental accumulation of coccidial oocysts, which leads to severe morbidity and mortality of these kiwi. Four species of coccidia have been morphologically described from sporulated oocysts with additional opportunistic descriptions of endogenous stages. This research continues the morphological descriptions of these species of Eimeria with an additional novel morphotype also morphologically described. It also provides the first genetic characterisation targeting the mitochondrial cytochrome c oxidase I (COI) gene. Based on these findings, it was determined there are at least five morphotypes of Eimeria that infect brown kiwi and co-infections are common at the ONE facilities surveyed. The COI amplicon targeted for this study was sufficient to provide differentiation from other members of this genus. Sanger sequencing yielded ambiguous bases, indicating the need for more in-depth sequencing.


Assuntos
Coccidiose , Eimeria , Paleógnatas , Animais , Eimeria/genética , Especificidade da Espécie , Paleógnatas/genética , Nova Zelândia/epidemiologia , Coccidiose/veterinária , Coccidiose/epidemiologia , Mamíferos
4.
PLoS One ; 17(10): e0266430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36215252

RESUMO

Kiwi are a unique and emblematic group of birds endemic to New Zealand. Deep-time evolutionary relationships among the five extant kiwi species have been difficult to resolve, in part due to the absence of pre-Quaternary fossils to inform speciation events. Here, we utilise single representative nuclear genomes of all five extant kiwi species (great spotted kiwi, little spotted kiwi, Okarito brown kiwi, North Island brown kiwi, and southern brown kiwi) and investigate their evolutionary histories with phylogenomic, genetic diversity, and deep-time (past million years) demographic analyses. We uncover relatively low levels of gene-tree phylogenetic discordance across the genomes, suggesting clear distinction between species. However, we also find indications of post-divergence gene flow, concordant with recent reports of interspecific hybrids. The four species for which unbiased levels of genetic diversity could be calculated, due to the availability of reference assemblies (all species except the southern brown kiwi), show relatively low levels of genetic diversity, which we suggest reflects a combination of older environmental as well as more recent anthropogenic influence. In addition, we suggest hypotheses regarding the impact of known past environmental events, such as volcanic eruptions and glacial periods, on the similarities and differences observed in the demographic histories of the five kiwi species over the past million years.


Assuntos
Paleógnatas , Struthioniformes , Animais , Demografia , Genômica , Paleógnatas/genética , Filogenia
5.
Genes (Basel) ; 13(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328061

RESUMO

In palaeognathous birds, several PCR-based methods and a range of genes and unknown genomic regions have been studied for the determination of sex. Many of these methods have proven to be unreliable, complex, expensive, and time-consuming. Even the most widely used PCR markers for sex typing in birds, the selected introns of the highly conserved CHD1 gene (primers P2/P8, 1237L/1272H, and 2550F/2718R), have rarely been effective in palaeognathous birds. In this study we used eight species of Palaeognathae to test three PCR markers: CHD1i9 (CHD1 gene intron 9) and NIPBLi16 (NIPBL gene intron 16) that performed properly as Psittaciformes sex differentiation markers, but have not yet been tested in Palaeognathae, as well as the CHD1iA intron (CHD1 gene intron 16), which so far has not been used effectively to sex palaeognathous birds. The results of our research indicate that the CHD1i9 marker effectively differentiates sex in four of the eight species we studied. In Rhea americana, Eudromia elegans, and Tinamus solitarius, the electrophoretic patterns of the amplicons obtained clearly indicate the sex of tested individuals, whereas in Crypturellus tataupa, sexing is possible based on poorly visible female specific bands. Additionally, we present and discuss the results of our in silico investigation on the applicability of CHD1i9 to sex other Palaeognathae that were not tested in this study.


Assuntos
Paleógnatas , Animais , Aves/genética , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Primers do DNA , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Íntrons/genética , Paleógnatas/genética , Análise para Determinação do Sexo/métodos
6.
J Genet Genomics ; 49(2): 109-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34872841

RESUMO

Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of "evolutionary strata". Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in the older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate such "defeminization" of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females rather than males, which evolved in their common ancestors.


Assuntos
Paleógnatas , Animais , Aves/genética , Evolução Molecular , Feminino , Genoma/genética , Masculino , Paleógnatas/genética , Filogenia , Cromossomos Sexuais/genética
7.
Genome Biol Evol ; 13(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34718546

RESUMO

Birds in the clade Palaeognathae, excluding Tinamiformes, have morphologically conserved karyotypes and less differentiated ZW sex chromosomes compared with those of other birds. In particular, the sex chromosomes of the ostrich and emu have exceptionally large recombining pseudoautosomal regions (PARs), whereas non-PARs are classified into two strata according to the date of their origins: stratum 0 and stratum 1 (S1). However, the construction and analysis of the genome sequences in these regions in the clade Palaeognathae can be challenging because assembling the S1 region is difficult owing to low sequence diversity between gametologs (Z-linked and W-linked sequences). We addressed this issue by applying the Platanus-allee assembler and successfully constructed the haplotype-resolved (phased) assembly for female emu, cassowary, and ostrich using only sequence read data derived from the Illumina platform. Comparative genomic and phylogenetic analyses based on assembled Z-linked and W-linked sequences confirmed that the S1 region of emu and cassowary formed in their common ancestor. Moreover, the interspersed repetitive sequence landscapes in the S1 regions of female emu showed an expansion of younger repetitive elements in the W-linked S1 region, suggesting an interruption in homologous recombination in the S1 region. These results provide novel insights into the trajectory of sex chromosome evolution in the clade Palaeognathae and suggest that the Illumina-based phased assembly method is an effective approach for elucidating the evolutionary process underlying the transition from homomorphic to differentiated sex chromosomes.


Assuntos
Paleógnatas , Struthioniformes , Animais , Evolução Molecular , Feminino , Cariotipagem , Paleógnatas/genética , Filogenia , Cromossomos Sexuais/genética , Struthioniformes/genética
8.
Genes (Basel) ; 11(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007827

RESUMO

The hallmark of sex chromosome evolution is the progressive suppression of recombination which leads to subsequent degeneration of the non-recombining chromosome. In birds, species belonging to the two major clades, Palaeognathae (including tinamous and flightless ratites) and Neognathae (all remaining birds), show distinctive patterns of sex chromosome degeneration. Birds are female heterogametic, in which females have a Z and a W chromosome. In Neognathae, the highly-degenerated W chromosome seems to have followed the expected trajectory of sex chromosome evolution. In contrast, among Palaeognathae, sex chromosomes of ratite birds are largely recombining. The underlying reason for maintenance of recombination between sex chromosomes in ratites is not clear. Degeneration of the W chromosome might have halted or slowed down due to a multitude of reasons ranging from selective processes, such as a less pronounced effect of sexually antagonistic selection, to neutral processes, such as a slower rate of molecular evolution in ratites. The production of genome assemblies and gene expression data for species of Palaeognathae has made it possible, during recent years, to have a closer look at their sex chromosome evolution. Here, we critically evaluate the understanding of the maintenance of recombination in ratites in light of the current data. We conclude by highlighting certain aspects of sex chromosome evolution in ratites that require further research and can potentially increase power for the inference of the unique history of sex chromosome evolution in this lineage of birds.


Assuntos
Paleógnatas/genética , Cromossomos Sexuais/genética , Animais , Eucromatina , Evolução Molecular , Feminino , Heterocromatina , Masculino , Filogenia , Recombinação Genética , Seleção Genética , Cromatina Sexual , Cromossomos Sexuais/fisiologia
9.
Biol Reprod ; 102(6): 1261-1269, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32179898

RESUMO

Aromatase (P450arom, CYP19A1) is the terminal enzyme in the synthesis of the steroid hormone family of estrogens. Not surprisingly, this enzyme has structural similarities between the limited number of species studied thus far. This study examined the structure of aromatases from four diverse Australian species including a marsupial (tammar wallaby; Macropus eugenii), monotreme (platypus; Ornithorhynchus anatinus), ratite (emu; Dromaius novaehollandiae) and lizard (bearded dragon; Pogona vitticeps). We successfully built homology models for each species, using the only crystallographically determined structure available, human aromatase. The amino acid sequences showed high amino acid sequence identity to the human aromatase: wallaby 81%, platypus 73%, emu 75% and bearded dragon at 74%. The overall structure was highly conserved among the five species, although there were non-secondary structures (loops and bends) that were variable and flexible that may result in some differences in catalytic activity. At the N-terminal regions, there were deletions and variations that suggest that functional distinctions may be found. We found that the active sites of all these proteins were identical, except for a slight variation in the emu. The electrostatic potential across the surfaces of these aromatases highlighted likely variations to the protein-protein interactions of these enzymes with both redox partner cytochrome P450 reductase and possibly homodimerization in the case of the platypus, which has been postulated for the human aromatase enzyme. Given the high natural selection pressures on reproductive strategies, the relatively high degree of conservation of aromatase sequence and structure across species suggests that there is biochemically very little scope for changes to have evolved without the loss of enzyme activity.


Assuntos
Aromatase/metabolismo , Lagartos/metabolismo , Marsupiais/metabolismo , Paleógnatas/metabolismo , Ornitorrinco/metabolismo , Sequência de Aminoácidos , Animais , Aromatase/genética , Regulação Enzimológica da Expressão Gênica , Genoma , Humanos , Lagartos/genética , Marsupiais/genética , Modelos Moleculares , Paleógnatas/genética , Ornitorrinco/genética , Conformação Proteica , Especificidade da Espécie
10.
Trop Anim Health Prod ; 52(1): 243-247, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31313019

RESUMO

This study was carried out to estimate genetic parameters for morphology, body weight, and tonic immobility traits in the red-winged tinamou (Rhynchotus rufescens). Information on 690 birds was used and genetic parameters were estimated using Bayesian methods under a multi-trait animal model. The following traits were considered in this study: tarsal length (TL), bill length (BL), wing length (WL), head width (HW), bill width (BW), mature weight (MW), weight at 90 days (W90), and tonic immobility (TI). The heritability showed estimates between 0.15 for wing length and 0.56 for bill length. Positive and negative genetic correlations were estimated, ranging from - 0.33 to 0.81. All the morphological, production, and behavioral traits studied will have moderate to high response to selection. The body weight at 90 days is a better alternative for use in breeding programs and its selection would not lead to an increase in the time of tonic immobility. Both the selection for weight gain and for reduction of tonic immobility time would lead to an increase in the size of the legs of the red-winged tinamou, which could be advantageous for thermal control of these birds in tropical systems.


Assuntos
Peso Corporal/genética , Resposta de Imobilidade Tônica , Paleógnatas/genética , Animais , Cruzamento , Hereditariedade , Paleógnatas/anatomia & histologia , Paleógnatas/fisiologia
11.
BMC Evol Biol ; 19(1): 233, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881941

RESUMO

BACKGROUND: Palaeognathae is a basal clade within Aves and include the large and flightless ratites and the smaller, volant tinamous. Although much research has been conducted on various aspects of palaeognath morphology, ecology, and evolutionary history, there are still areas which require investigation. This study aimed to fill gaps in our knowledge of the Southern Cassowary, Casuarius casuarius, for which information on the skeletal systems of the syrinx, hyoid and larynx is lacking - despite these structures having been recognised as performing key functional roles associated with vocalisation, respiration and feeding. Previous research into the syrinx and hyoid have also indicated these structures to be valuable for determining evolutionary relationships among neognath taxa, and thus suggest they would also be informative for palaeognath phylogenetic analyses, which still exhibits strong conflict between morphological and molecular trees. RESULTS: The morphology of the syrinx, hyoid and larynx of C. casuarius is described from CT scans. The syrinx is of the simple tracheo-bronchial syrinx type, lacking specialised elements such as the pessulus; the hyoid is relatively short with longer ceratobranchials compared to epibranchials; and the larynx is comprised of entirely cartilaginous, standard avian anatomical elements including a concave, basin-like cricoid and fused cricoid wings. As in the larynx, both the syrinx and hyoid lack ossification and all three structures were most similar to Dromaius. We documented substantial variation across palaeognaths in the skeletal character states of the syrinx, hyoid, and larynx, using both the literature and novel observations (e.g. of C. casuarius). Notably, new synapomorphies linking Dinornithiformes and Tinamidae are identified, consistent with the molecular evidence for this clade. These shared morphological character traits include the ossification of the cricoid and arytenoid cartilages, and an additional cranial character, the articulation between the maxillary process of the nasal and the maxilla. CONCLUSION: Syrinx, hyoid and larynx characters of palaeognaths display greater concordance with molecular trees than do other morphological traits. These structures might therefore be less prone to homoplasy related to flightlessness and gigantism, compared to typical morphological traits emphasised in previous phylogenetic studies.


Assuntos
Laringe/anatomia & histologia , Paleógnatas/anatomia & histologia , Paleógnatas/genética , Filogenia , Animais , Evolução Biológica , Feminino , Glote/anatomia & histologia , Masculino , Orofaringe/anatomia & histologia , Paleógnatas/classificação , Vocalização Animal
12.
PLoS Biol ; 17(10): e3000448, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31577791

RESUMO

The development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns, yet drawing testable hypotheses from those often remains difficult. Consequently, little is known about pattern-forming events. Here, we surveyed plumage patterns and their emergence in Galliformes, ratites, passerines, and penguins, together representing the three major taxa of the avian phylogeny, and built a unified model that not only reproduces final patterns but also intrinsically generates shared and varying directionality, sequence, and duration of patterning. We used in vivo and ex vivo experiments to test its parameter-based predictions. We showed that directional and sequential pattern progression depends on a species-specific prepattern: an initial break in surface symmetry launches a travelling front of sharply defined, oriented domains with self-organising capacity. This front propagates through the timely transfer of increased cell density mediated by cell proliferation, which controls overall patterning duration. These results show that universal mechanisms combining prepatterning and self-organisation govern the timely emergence of the plumage pattern in birds.


Assuntos
Galliformes/genética , Modelos Estatísticos , Paleógnatas/genética , Passeriformes/genética , Pigmentação/genética , Spheniscidae/genética , Animais , Cor , Embrião não Mamífero , Plumas/citologia , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Galliformes/anatomia & histologia , Galliformes/classificação , Galliformes/crescimento & desenvolvimento , Padrões de Herança , Morfogênese/genética , Paleógnatas/anatomia & histologia , Paleógnatas/classificação , Paleógnatas/crescimento & desenvolvimento , Passeriformes/anatomia & histologia , Passeriformes/classificação , Passeriformes/crescimento & desenvolvimento , Filogenia , Pele/citologia , Pele/crescimento & desenvolvimento , Pele/metabolismo , Spheniscidae/anatomia & histologia , Spheniscidae/classificação , Spheniscidae/crescimento & desenvolvimento
13.
Syst Biol ; 68(6): 937-955, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135914

RESUMO

Palaeognathae represent one of the two basal lineages in modern birds, and comprise the volant (flighted) tinamous and the flightless ratites. Resolving palaeognath phylogenetic relationships has historically proved difficult, and short internal branches separating major palaeognath lineages in previous molecular phylogenies suggest that extensive incomplete lineage sorting (ILS) might have accompanied a rapid ancient divergence. Here, we investigate palaeognath relationships using genome-wide data sets of three types of noncoding nuclear markers, together totaling 20,850 loci and over 41 million base pairs of aligned sequence data. We recover a fully resolved topology placing rheas as the sister to kiwi and emu + cassowary that is congruent across marker types for two species tree methods (MP-EST and ASTRAL-II). This topology is corroborated by patterns of insertions for 4274 CR1 retroelements identified from multispecies whole-genome screening, and is robustly supported by phylogenomic subsampling analyses, with MP-EST demonstrating particularly consistent performance across subsampling replicates as compared to ASTRAL. In contrast, analyses of concatenated data supermatrices recover rheas as the sister to all other nonostrich palaeognaths, an alternative that lacks retroelement support and shows inconsistent behavior under subsampling approaches. While statistically supporting the species tree topology, conflicting patterns of retroelement insertions also occur and imply high amounts of ILS across short successive internal branches, consistent with observed patterns of gene tree heterogeneity. Coalescent simulations and topology tests indicate that the majority of observed topological incongruence among gene trees is consistent with coalescent variation rather than arising from gene tree estimation error alone, and estimated branch lengths for short successive internodes in the inferred species tree fall within the theoretical range encompassing the anomaly zone. Distributions of empirical gene trees confirm that the most common gene tree topology for each marker type differs from the species tree, signifying the existence of an empirical anomaly zone in palaeognaths.


Assuntos
Genoma/genética , Paleógnatas/classificação , Paleógnatas/genética , Filogenia , Animais , Genômica
14.
Science ; 364(6435): 74-78, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948549

RESUMO

A core question in evolutionary biology is whether convergent phenotypic evolution is driven by convergent molecular changes in proteins or regulatory regions. We combined phylogenomic, developmental, and epigenomic analysis of 11 new genomes of paleognathous birds, including an extinct moa, to show that convergent evolution of regulatory regions, more so than protein-coding genes, is prevalent among developmental pathways associated with independent losses of flight. A Bayesian analysis of 284,001 conserved noncoding elements, 60,665 of which are corroborated as enhancers by open chromatin states during development, identified 2355 independent accelerations along lineages of flightless paleognaths, with functional consequences for driving gene expression in the developing forelimb. Our results suggest that the genomic landscape associated with morphological convergence in ratites has a substantial shared regulatory component.


Assuntos
Evolução Biológica , Epigênese Genética , Evolução Molecular , Voo Animal , Paleógnatas/anatomia & histologia , Paleógnatas/genética , Animais , Teorema de Bayes , Cromatina/metabolismo , Sequência Conservada , Elementos Facilitadores Genéticos , Epigenômica , Éxons/genética , Extinção Biológica , Membro Anterior/anatomia & histologia , Paleógnatas/fisiologia , Fenótipo , Filogenia
15.
PLoS One ; 12(11): e0187549, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095930

RESUMO

Birds have genomic and chromosomal features that make them an attractive group to analyze the evolution of recombination rate and the distribution of crossing over. Yet, analyses are biased towards certain species, especially domestic poultry and passerines. Here we analyze for the first time the recombination rate and crossover distribution in the primitive ratite bird, Rhea americana (Rheiformes, Palaeognathae). Using a cytogenetic approach for in situ mapping of crossovers we found that the total genetic map is 3050 cM with a global recombination rate of 2.1 cM/Mb for female rheas. In the five largest macrobivalents there were 3 or more crossovers in most bivalents. Recombination rates for macrobivalents ranges between 1.8-2.1 cM/Mb and the physical length of their synaptonemal complexes is highly predictive of their genetic lengths. The crossover rate at the pseudoautosomal region is 2.1 cM/Mb, similar to those of autosomal pairs 5 and 6 and only slightly higher compared to other macroautosomes. It is suggested that the presence of multiple crossovers on the largest macrobivalents is a feature common to many avian groups, irrespective of their position throughout phylogeny. These data provide new insights to analyze the heterogeneous recombination landscape of birds.


Assuntos
Paleógnatas/genética , Recombinação Genética , Animais , Troca Genética , Feminino , Humanos , Cariotipagem
16.
Curr Biol ; 27(3): R110-R113, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28171755

RESUMO

The flightless ratite birds are scattered all across the Southern hemisphere, on landmasses that have long been separated from each other. But how did they get there? They flew in from the North.


Assuntos
Evolução Biológica , Voo Animal , Paleógnatas/fisiologia , Animais , DNA Mitocondrial , Paleógnatas/genética , Filogenia , Análise de Sequência de DNA
17.
Mol Ecol ; 26(3): 799-813, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28093817

RESUMO

Genetic effects are often overlooked in endangered species monitoring, and populations showing positive growth are often assumed to be secure. However, the continued reproductive success of a few individuals may mask issues such as inbreeding depression, especially in long-lived species. Here, we test for inbreeding depression in little spotted kiwi (Apteryx owenii) by comparing a population founded with two birds to one founded with 40 birds, both from the same source population and both showing positive population growth. We used a combination of microsatellite genotypes, nest observations and modelling to examine the consequences of assessing population viability exclusively via population growth. We demonstrate (i) significantly lower hatching success despite significantly higher reproductive effort in the population with two founders; (ii) positive growth in the population with two founders is mainly driven by ongoing chick production of the founding pair; and (iii) a substantial genetic load in the population founded with two birds (10-15 diploid lethal equivalents). Our results illustrate that substantial, cryptic inbreeding depression may still be present when a population is growing, especially in long-lived species with overlapping generations.


Assuntos
Genética Populacional , Depressão por Endogamia , Paleógnatas/genética , Animais , Espécies em Perigo de Extinção , Carga Genética , Genótipo , Repetições de Microssatélites , Densidade Demográfica
18.
Curr Biol ; 27(1): 68-77, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27989673

RESUMO

The Palaeognathae comprise the flightless ratites and the volant tinamous, and together with the Neognathae constitute the extant members of class Aves. It is commonly believed that Palaeognathae originated in Gondwana since most of the living species are found in the Southern Hemisphere [1-3]. However, this hypothesis has been questioned because the fossil paleognaths are mostly from the Northern Hemisphere in their earliest time (Paleocene) and possessed many putative ancestral characters [4]. Uncertainties regarding the origin and evolution of Palaeognathae stem from the difficulty in estimating their divergence times [1, 2] and their remarkable morphological convergence. Here, we recovered nuclear genome fragments from extinct elephant birds, which enabled us to reconstruct a reliable phylogenomic time tree for the Palaeognathae. Based on the tree, we identified homoplasies in morphological traits of paleognaths and reconstructed their morphology-based phylogeny including fossil species without molecular data. In contrast to the prevailing theories, the fossil paleognaths from the Northern Hemisphere were placed as the basal lineages. Combined with our stable divergence time estimates that enabled a valid argument regarding the correlation with geological events, we propose a new evolutionary scenario that contradicts the traditional view. The ancestral Palaeognathae were volant, as estimated from their molecular evolutionary rates, and originated during the Late Cretaceous in the Northern Hemisphere. They migrated to the Southern Hemisphere and speciated explosively around the Cretaceous-Paleogene boundary. They then extended their distribution to the Gondwana-derived landmasses, such as New Zealand and Madagascar, by overseas dispersal. Gigantism subsequently occurred independently on each landmass.


Assuntos
Evolução Molecular , Extinção Biológica , Fósseis , Paleógnatas/genética , Filogenia , Animais , Núcleo Celular/genética , Genoma , Genômica , Modelos Genéticos , Análise de Sequência de DNA/métodos
19.
Proc Natl Acad Sci U S A ; 113(38): E5580-7, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27573837

RESUMO

Molecular dating largely overturned the paradigm that global cooling during recent Pleistocene glacial cycles resulted in a burst of species diversification although some evidence exists that speciation was commonly promoted in habitats near the expanding and retracting ice sheets. Here, we used a genome-wide dataset of more than half a million base pairs of DNA to test for a glacially induced burst of diversification in kiwi, an avian family distributed within several hundred kilometers of the expanding and retracting glaciers of the Southern Alps of New Zealand. By sampling across the geographic range of the five kiwi species, we discovered many cryptic lineages, bringing the total number of kiwi taxa that currently exist to 11 and the number that existed just before human arrival to 16 or 17. We found that 80% of kiwi diversification events date to the major glacial advances of the Middle and Late Pleistocene. During this period, New Zealand was repeatedly fragmented by glaciers into a series of refugia, with the tiny geographic ranges of many kiwi lineages currently distributed in areas adjacent to these refugia. Estimates of effective population size through time show a dramatic bottleneck during the last glacial cycle in all but one kiwi lineage, as expected if kiwi were isolated in glacially induced refugia. Our results support a fivefold increase in diversification rates during key glacial periods, comparable with levels observed in classic adaptive radiations, and confirm that at least some lineages distributed near glaciated regions underwent rapid ice age diversification.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Especiação Genética , Paleógnatas/genética , Animais , Ecossistema , Humanos , Camada de Gelo , Nova Zelândia , Filogenia , Análise de Sequência de DNA
20.
BMC Genomics ; 17: 410, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27230888

RESUMO

BACKGROUND: Kiwi represent the most basal extant avian lineage (paleognaths) and exhibit biological attributes that are unusual or extreme among living birds, such as large egg size, strong olfaction, nocturnality, flightlessness and long lifespan. Despite intense interest in their evolution and their threatened status, genomic resources for kiwi were virtually non-existent until the recent publication of a single genome. Here we present the most comprehensive kiwi transcriptomes to date, obtained via Illumina sequencing of whole blood and de novo assembly of mRNA sequences of eight individuals from each of the two rarest kiwi species, little spotted kiwi (LSK; Apteryx owenii) and rowi (A. rowi). RESULTS: Sequences obtained were orthologous with a wide diversity of functional genes despite the sequencing of a single tissue type. Individual and composite assemblies contain more than 7900 unique protein coding transcripts in each of LSK and rowi that show strong homology with chicken (Gallus gallus), including those associated with growth, development, disease resistance, reproduction and behavior. The assemblies also contain 66,909 SNPs that distinguish between LSK and rowi, 12,384 SNPs among LSK (associated with 3088 genes), and 29,313 SNPs among rowi (associated with 4953 genes). We found 3084 transcripts differentially expressed between LSK and rowi and 150 transcripts differentially expressed between the sexes. Of the latter, 83 could be mapped to chicken chromosomes with 95% syntenic with chromosome Z. CONCLUSIONS: Our study has simultaneously sequenced multiple species, sexes, and individual kiwi at thousands of genes, and thus represents a significant leap forward in genomic resources available for kiwi. The expression pattern we observed among chromosome Z related genes in kiwi is similar to that observed in ostriches and emu, suggesting a common and ancestral pattern of sex chromosome homomorphy, recombination, and gene dosage among living paleognaths. The transcriptome assemblies described here will provide a rich resource for polymorphic marker development and studies of adaptation of these highly unusual and endangered birds.


Assuntos
Evolução Biológica , Marcadores Genéticos , Paleógnatas/genética , Cromossomos Sexuais , Transcriptoma , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Variação Genética , Anotação de Sequência Molecular , Fatores Sexuais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...